Distance, Displacement, Speed, and Velocity

GURUKULETE Distance

- Distance (d) - how far an object travels.
- Does not depend on direction.
- Imagine an ant crawling along a ruler.

- What distance did the ant travel?
$-\mathrm{d}=3 \mathrm{~cm}$
- Distance does not depend on direction.
- Here's our intrepid ant explorer again.

- Now what distance did the ant travel?
$-d=3 \mathrm{~cm}$
- Does his direction change the answer?

Distance

- Distance does not depend on direction.
- Let's follow the ant again.

- What distance did the ant walk this time?
- $\mathrm{d}=7 \mathrm{~cm}$

GURUKU
 Displacement

- Displacement ($\Delta \mathrm{d}$) - difference between an object's final position and its starting position.
- Does depend on direction.
- Displacement = final position - initial position
- $\Delta \mathrm{d}=\mathrm{d}_{\text {final }}-\mathrm{d}_{\text {initial }}$
- In order to define displacement, we need directions.
- Examples of directions:
- + and -
- N, S, E, W
- Angles
- Example of distance:
- The ant walked 3 cm .
- Example of displacement:
- The ant walked 3 cm EAST.
- An object's distance traveled and its displacement aren't always the same!

GURUKULETA

- Let's revisit our ant, and this time we'll find his displacement.

- Distance: 3 cm
- Displacement: +3 cm
- The positive gives the ant a direction!

Displacement

- Find the ant's displacement again.
- Remember, displacement has direction!

- Distance: 3 cm
- Displacement: -3 cm

Displacement

- Find the distance and displacement of the ant.

- Distance: 7 cm
- Displacement: +3 cm

Displacement vs. Distance

- An athlete runs around a track that is 100 meters long three times, then stops.
- What is the athlete's distance and displacement?

- Distance $=300 \mathrm{~m}$
- Displacement $=0 \mathrm{~m}$
- Why?

GURUKULIT Speed

- Speed (s) - Rate at which an object is moving.
- speed = distance / time
- $s=d / t$
- Like distance, speed does not depend on direction.

Speed

- A car drives 100 meters in 5 seconds.

-What is the car's average speed?
$-\mathrm{s}=\mathrm{d} / \mathrm{t}$
$-\mathrm{s}=(100 \mathrm{~m}) /(5 \mathrm{~s})=20 \mathrm{~m} / \mathrm{s}$

GURUKULET Speed

- A rocket is traveling at $10 \mathrm{~m} / \mathrm{s}$. How long does it take the rocket to travel 30 m ?

- A racecar is traveling at 85.0 m/s. How far does the car travel in 30.0 s?

GURUKULETA
Velocity

- Velocity (v) - speed with direction.
- velocity = displacement / time
- $\mathrm{v}=\Delta \mathrm{d} / \mathrm{t}$
- Has magnitude and direction!
- Magnitude - a measure that has a value

- Back to our ant explorer!

- Distance traveled: 7 cm
- Displacement: +3 cm
- Average speed: $(7 \mathrm{~cm}) /(5 \mathrm{~s})=1.4 \mathrm{~cm} / \mathrm{s}$
- Average velocity: $(+3 \mathrm{~cm}) /(5 \mathrm{~s})=+0.6 \mathrm{~cm} / \mathrm{s}$

The End

Thanks

